R09

Code No: C4301, C4201, C5401 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.Tech I Semester Examinations, April/May 2012 MACHINE MODELLING AND ANALYSIS (COMMON TO POWER ELECTRONICS, POWER AND INDUSTRIAL DRIVES, POWER ELECTRONICS AND ELECTRIC DRIVES)

Time: 3hours

Max. Marks: 60

Answer any five questions All questions carry equal marks

- - -

- 1.a) What is primitive 2-axis machine? How the various windings of a machine are represented by the primitive machine and write the voltage equations?
 - b) Derive the mathematical expressions for voltage and force/torque from the fundamental principles for
 - i) Solenoid with fixed armature
 - ii) Solenoid with angular movement.
- 2.a) Obtain the transfer function of a separately excited DC motor by considering armature inductance, La and load torque, T_L in terms of undamped natural angular frequency and damping factor.
 - b) Obtain the mathematical model of DC series motor in state variable form.
- 3.a) Obtain the mathematical model of a differentially compounded DC motor in matrix form.
 - b) A 10 kW, 230V, 1500 rpm DC motor has the following constants: Ra = 1.0Ω ; La = 0.104; km = 4.00 Nm/armature-amps; J = 1.00 kg-m²; The load coupled with the motor has its inertia equal to 1.00 kg-m². If the load torque varies linearly with speed, then calculate undamped natural angular frequency, damping ratio and investigate its dynamic behavior. Neglect rotational losses.
- 4.a) Explain the importance of phase and active transformations in case of AC motors.
- b) In order to ensure power invariance in transforming one set of variables to another, show that the transformation matrix should be equal to its inverse.
- 5.a) Draw the basic circuit model of $3-\varphi$ induction motor as well as rotor and obtain voltage equations in terms of stator and rotor currents in the matrix form.
- b) What is commutator transformation? Explain it with respect to $3-\varphi$ induction motor.
- 6. Obtain the state space model of a $3-\varphi$ induction motor with
 - i) Stator reference frame
 - ii) Rotor reference frame.

Contd...2

- 7. Derive the expression for armature mutual inductances of a salient pole synchronous machine from a consideration of its basic parameters.
- 8.a) Explain Park's transformation for a synchronous machine and develop and develop a mathematical model based on it.
 - b) Explain how flux linkage equations of synchronous machine model can be transformed from stator reference frame to rotor reference frame.

* * * * * *